

Institute for Interlaboratory Studies

> Results of Proficiency Test Bitumen November 2023

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYZES	4
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	6
4	EVALUATION	7
4.1	EVALUATION PER TEST	7
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2023 WITH PREVIOUS PTS	10

Appendices:

1.	Data, statistical and graphic results	12
2.	Number of participants per country	26
3.	Abbreviations and literature	27

1 INTRODUCTION

Since 2014 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of Bitumen in accordance with the latest version of EN12591 every year. During the annual proficiency testing program of 2023 it was decided to continue the round robin for the analysis of Bitumen.

In this interlaboratory study 48 laboratories in 30 countries registered for participation, see appendix 2 for the number of participants per country. In this report the results of the Bitumen proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to a laboratory that has performed the tests in accordance with for ISO/IEC17043 relevant requirements of ISO/IEC17025.

It was decided to send one sample of Bitumen grade 35/50 in a 2.5 liter can labelled #23255. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

A batch of 60 subsamples of Bitumen grade 35/50 in 2.5 L metal cans was obtained from a local supplier and labelled #23255.

The homogeneity of the subsamples was checked by determination of Penetration at 25 °C in accordance with EN1426 on 5 stratified randomly selected subsamples.

	Penetration in 0.1 mm					
sample #23255-1	39					
sample #23255-2	38					
sample #23255-3	39					
sample #23255-4	39					
sample #23255-5	39					

Table 1: homogeneity test results of subsamples #23255

From the above test results the relative standard deviation (RSD) was calculated and compared with 0.3 times the average relative standard deviation obtained from three iis PTs with grade 35/50 Bitumen conducted from 2018 - 2022 in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Penetration
RSD% (observed)	1.2
reference method	iis PTs
0.3 x RSD% (reference method)	1.8

Table 2: evaluation of the relative standard deviation of subsamples #23255

The calculated relative standard deviation is in agreement with 0.3 times the average relative standard deviation obtained from the previous iis PTs. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one 2.5 L can of sample #23255 was sent on November 8, 2023. An SDS was added to the sample package.

2.5 STABILITY OF THE SAMPLES

The stability of Bitumen in the metal cans was checked. The material has been found sufficiently stable for the period of the proficiency test.

2.6 ANALYZES

The participants were requested to determine: Density at 25 °C, Dynamic Viscosity at 60 °C, Flash Point C.O.C., Fraass Breaking Point, Kinematic Viscosity at 135 °C, Penetration at 25 °C, Penetration Index, RTFOT at 163 °C (Change of Mass, Retained Penetration, Viscosity Ratio and Increase in Softening Point), Softening Point (Ring and Ball), Solubility in Xylene and Ductility. It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care. The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test and by R(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests. Therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study. The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z<sub>(target)</sub> = (test result - average of PT) / target standard deviation
```

The $z_{(target)}$ scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

	z	< 1	good
1 <	z	< 2	satisfactory
2 <	z	< 3	questionable
3 <	z		unsatisfactory

4 EVALUATION

In this proficiency test some problems were encountered with the dispatch of the samples. Two participants reported test results after the final reporting date and three other participants did not report any test results. Not all participants were able to report all tests requested.

In total 45 participants reported 307 numerical test results. Observed were 14 outlying test results, which is 4.6%. In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK", "suspect" or "unknown". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER TEST

In this section the reported test results are discussed per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 3.

In the iis PT reports ASTM test methods are referred to with a number (e.g. D36/D36M) and an added designation for the year that the test method was adopted or revised (e.g. D36/D36M:14).

When a method has been reapproved an "R" will be added and the year of approval (e.g. D36/D36M:14R20).

<u>Density at 25 °C</u>: The group of participants met the target requirements. Four statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN15326:07+A1:09.

<u>Dynamic Viscosity at 60 °C</u>: The group of participants had difficulty to meet the target requirements. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of EN12596:23.

- <u>Flash Point C.O.C.</u>: The group of participants had difficulty to meet the target requirements. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not in agreement with the requirements of ISO2592:17 nor ASTM D92:18.
- <u>Fraass Breaking Point</u>: The group of participants met the target requirements. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of EN12593:15.
- <u>Kinematic Viscosity at 135 °C</u>: The group of participants met the target requirements. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN12595:23 or ASTM D2170:22.
- Penetration at 25 °C: The group of participants may have had difficulty to meet the target requirements depending on the procedure used. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of EN1426:15 but is in agreement with the requirements of ASTM D5:20. When evaluated separately the calculated reproducibility after rejection of the statistical outlier for EN1426 is still not in agreement with the requirements of EN1426:15 but the calculated reproducibility after rejection of the statistical outlier for ASTM D5 is in agreement with ASTM D5:20. Different factors could cause this large variation, such as preparation, temperature and needle. During the measurement, the temperature should be kept at 25 °C, by immersing the sample in enough water of this temperature. For measurements outside of the waterbath, a transfer dish of 350 ml should be used. Deviations from this temperature will have influence on the penetration. Another factor is the tip of the needle used. This tip should keep the same dimensions/surface through out testing in time. In practice, it will get abrasion and wear and should be replaced regularly.

- <u>Penetration Index</u>: The group of participants had difficulty to meet the target requirements. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of EN12591:09.
- <u>RTFOT at 163 °C Change of Mass</u>: The group of participants met the target requirements. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN12607-1:14.
- <u>RTFOT at 163 °C Retained Penetration</u>: The group of participants had difficulty to meet the target requirements. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of EN12607-1:14.
- <u>RTFOT at 163 °C Viscosity Ratio</u>: The group of participants had difficulty to meet the target requirements. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of EN12607-1:14.
- <u>RTFOT at 163 °C on Increase in Softening Point</u>: The group of participants had difficulty to meet the target requirements. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of EN12607-1:14.
- <u>Softening Point (Ring and Ball)</u>: The group of participants met the target requirements. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of EN1427:15 and ASTM D36/D36M:14R20.
- <u>Solubility in Xylene</u>: The group of participants had difficulty to meet the target requirements. No statistical outliers were observed. It was decided not to calculate zscores due to the large difference between the calculated and reference reproducibility.
- <u>Ductility</u>: The reporting participants agreed on a test result >100 cm.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from reference methods are presented in the next table.

Parameter	unit	n	average	2.8 * sd	R(lit)
Density at 25 °C	kg/m³	21	1041.5	4.1	5
Dynamic Viscosity at 60 °C	Pa.s	13	1019.8	148.1	102.0
Flash Point C.O.C.	°C	21	318	37	18
Fraass Breaking Point	°C	15	-10.0	6.6	6

Parameter	unit	n	average	2.8 * sd	R(lit)
Kinematic Viscosity at 135 °C	mm²/s	17	959.9	85.7	86.4
Penetration at 25 °C	0.1 mm	43	38.9	4.8	3
Penetration Index		18	-0.30	0.66	0.5
RTFOT - Change of Mass	%	25	-0.16	0.12	0.2
RTFOT - Retained Penetration	%	25	65.2	15.2	10
RTFOT - Viscosity Ratio		8	3.8	1.9	0.8
RTFOT - Increase in Soft. Point	°C	23	7.6	5.0	4
Softening Point (Ring & Ball)	°C	42	56.4	1.9	2
Solubility in Xylene	%M/M	16	99.57	0.66	(0.15)
Ductility	cm	11	>100	n.a.	n.a.

Table 3: reproducibilities of tests on sample #23255

For results between brackets no z-scores are calculated.

Without further statistical calculations it can be concluded that for many tests there is not a good compliance of the group of participants with the reference test methods. The problematic tests have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF NOVEMBER 2023 WITH PREVIOUS PTS

	November 2023	November 2022	December 2021	December 2020	December 2019
Number of reporting laboratories	45	45	51	50	45
Number of test results	307	318	348	315	310
Number of statistical outliers	14	15	11	14	11
Percentage of statistical outliers	4.6%	4.7%	3.2%	4.4%	3.5%

Table 4: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared to the requirements of the reference test methods. The conclusions are given in the following table.

Parameter	November 2023	November 2022	December 2021	December 2020	December 2019
Paving Grade	35/50	35/50	70/100	35/50	70/100
Density at 25 °C	+	+/-	+/-	-	-
Dynamic Viscosity at 60 °C	-	+/-	-		-
Flash Point C.O.C.		-		()	-
Fraass Breaking Point	+/-	-	-	-	+/-
Kinematic Viscosity at 135 °C	+/-	-	-		-
Penetration at 25 °C	-	-	-		-
Penetration Index	-	+	+/-	+/-	-
RTFOT - Change of Mass	+	+/-	-	++	

Parameter	November 2023	November 2022	December 2021	December 2020	December 2019
RTFOT - Retained Penetration	-	+/-	+/-	-	+/-
RTFOT - Viscosity Ratio		-	+/-	n.e.	()
RTFOT - Increase in Soft. Point	-	+	+	+/-	-
Softening Point (Ring and Ball)	+/-	+	+/-	-	+/-
Solubility in Xylene	()	+/-	()	()	()

Table 5: comparison of determinations to the reference test methods

For results between brackets no z-scores are calculated.

The following performance categories were used:

- ++ : group performed much better than the reference test method
- + : group performed better than the reference test method
- +/- : group performance equals the reference test method
- : group performed worse than the reference test method
- -- : group performed much worse than the reference test method
- n.e. : not evaluated

APPENDIX 1

Determination of Density at 25 °C on sample #23255; results in kg/m³

lab	method	value	mark	z(targ)	remarks
154		1041		_0.30	
225	D70	1041	R(0.05)	3.62	
328	878	1040	1(0.00)	0.02	
333					
335	EN15326	1043	C	0.82	first reported 1 043 kg/m ³
342	D70	1043 1	C	0.02	first reported 1060
360	EN15326	1040.1	U	-0.60	
365	21110020				
396	D70	1043 7		1 21	
398	510				
399					
444					
447	D70	1047	R(0.05)	3.06	
604	D70	1041.1		-0.25	
657	D70	1037	R(0.05)	-2.54	
736	EN15326	1041.4	()	-0.08	
781	EN15326	1040.6		-0.53	
865	D70/D70M	1040.5	С	-0.58	reported 1.0405 kg/m ³
1011					1
1026					
1040	ISO12185	1041.5		-0.02	
1108	EN15326	1043.0	С	0.82	first reported 1035.8
1135					•
1320					
1340	EN15326	1041		-0.30	
1378	EN15326	1038.8		-1.54	
1399					
1402	ISO3838	1041.4		-0.08	
1613	DIN51757	1040.6		-0.53	
1631					
1724					
1730	EN15326	1041.8	С	0.14	first reported 1.0418 kg/m ³
1741	EN15326	1041.86		0.18	
1833					
1849					
1852					
1857	D70	1038.2		-1.87	
1881					
1944	EN15326	1042.9		0.76	
1958	D70	1048.4	C,R(0.05)	3.84	reported 1.0484 kg/m ³
1990			W		test result withdrawn, reported 1.0341 kg/m ³
6228					
6229	EN15326	1044	-	1.38	
6404	EN15326	1042.5	С	0.54	first reported 1.0425 kg/m ³
6419					
6420					
6474					
6561					
	normality	OK			
	nonnailty	0N 21			
	u autiora	∠ I 4			
		4 10/1 5//			
	nicali (II) st dev. (n)	1 / 80/			
	R(calc)	1.4004			
	st dev (FN15326.07+ Δ 1.00)	1 7857			
	R(EN15326:07+A1:09)	5			
	(LITIO020.01 (A1.00)	0			

lab method

Determination of Dynamic Viscosity at 60 °C on sample #23255; results in Pa.s

z(targ) remarks

mark

value

154 225	D2171	1010 			-0.27							
328												
333 335												
342												
360												
305 396												
398												
399												
444 447												
604												
657 736	D2171	1012			-0.21							
781	EN12596	963.29			-1.55							
865	D2171/D2171M	1105.8			2.36							
1011												
1040												
1108												
1135 1320	EN12596	1015			-0.13							
1340	EN12596	903.38			-3.20							
1378												
1399	EN12596	 1087			1 84							
1613												
1631												
1724	EN12596	1036			0.44							
1741	EN12596	973.6			-1.27							
1833 1840												
1852												
1857	D2171	1053.9			0.94							
1881 1944												
1958												
1990	D2171	1016.23			-0.10							
6220												
6404	EN12596	1053	С		0.91	first re	ported	1153				
6419 6420												
6474												
6561												
	normality	ОК										
	n	13										
	outliers	0										
	st.dev. (n)	1019.82 52.906										
	R(calc.)	148.14										
	st.dev.(EN12596:23)	36.422										
	N(EN12000.20)	101.00										
¹²⁰⁰ T										0.009]
150 -										0.008 -		Kernel Density
100								Δ	Δ	0.007 -		
1050 -					۵	۵	۵			0.006 -		
1000 -	۸.	Δ Δ	Δ	8						0.005 -		
950	Δ Δ									0.004	//	
900 - 4										0.002	//	$\langle $
850 -										0.001 -	1	
800 4	6 5 6 2 7	35	06	36	.30	104	157	102	192	0	850 950	1050 1150 1250
5		÷ ۲	5	~	17	64	18	7	æ		555 550	

Determination of Flash Point C.O.C. on sample #23255; results in °C

lab	method	value	mark	z(targ)	remarks
154					
225	D92 manual	316.0		-0.30	
328					
333					
335	ISO2502 automated			0.63	
360	ISO2592 automated	311.0		-1.08	
365				-1.00	
396					
398					
399					
444					
447	Doo				
604 657	D92 manual	318		0.01	
736	ISO2592 automated	321		0.48	
781	ISO2592 automated	more 290			
865	D92 manual	318		0.01	
1011	ISO2592 automated	>280			
1026					
1040					
1108					
1135	1502592 automated	308.0		-1.54	
1320	ISO2592 automated	319 5		0.24	
1378	ISO2592 automated	314		-0.61	
1399					
1402	ISO2592 automated	330		1.88	
1613	D92 manual	290	С	-4.34	first reported 250
1631	ISO2592 automated	308	-	-1.54	
1724	D92 manual	315	С	-0.46	first reported 268
1730	ISO2502 automated			2 10	
1833	1302392 automateu	318		0.01	
1849	ISO2592 automated	320		0.32	
1852					
1857	ISO2592 manual	more 260			
1881					
1944	ISO2592 manual	308		-1.54	
1958	D92 manual	320	\\/	0.32	test result withdrawn, reported 151.5
6228	ISO2592 automated	345	vv	4 21	lest result withdrawn, reported 151.5
6229	ISO2592 automated	346		4.37	
6404	ISO2592 manual	297		-3.26	
6419					
6420			_ / / .		
6474	D92 automated	257	R(0.01)	-9.48	
6561					
	normality	suspect			
	n	21			
	outliers	1			
	mean (n)	317.93			
	st.dev. (n)	13.212			
	R(calc.)	36.99			
	st.dev.(ISO2592:17)	6.429			
	R(ISU2592:17)	18			
	R(D92.18)	18			
³⁷⁰ T					0.045
					0.04 - Kernel Density
350 +					▲ ▲ 0.035 -
330 -					
		<u></u> Δ_Δ_Δ	<u> </u>	Δ Δ	<u>A</u> <u>A</u> 0.025 -
310 +		-			0.02 -

290 -

0.015

0.01

0.005

Determination of Fraass Breaking Point on sample #23255; results in °C

lab	method	value	mark z(targ)	remarks	
154			9/		-
225					
328					
335					
342					
360	EN12593 automated	-10.4	-0.19		
365	EN12502	 0			
398	LN12393	-0			
399					
444					
44 <i>1</i> 604					
657					
736	EN12593 automated	-8	0.93		
781	EN12593 automated	-12	-0.94		
865	EN12502 manual	 7			
1011	EN 12595 manual	-7	1.39		
1040					
1108					
1135					
1320	EN12503 automated		 _0 10		
1378	LIN 12000 automateu	-10.4	-0.19		
1399					
1402	EN12593 manual	-4	2.79		
1613 1631					
1724					
1730	EN12593 automated	-10.5	-0.24		
1741	EN12593 automated	-12.0	-0.94		
1833					
1852	EN12593 automated	-10	-0.01		
1857	EN12593 automated	-11.5	-0.71		
1881					
1944	EN12593 automated	-11	-0.47		
1958					
6228	EN12593 automated	-13	-1.41		
6229	EN12593 automated	-10	-0.01		
6404	EN12593 automated	-12	-0.94		
6419 6420					
6474					
6561					
	normality	not UK 15			
	outliers	0			
	mean (n)	-9.99			
	st.dev. (n)	2.358			
	R(calc.)	6.60			
	R(EN12593.15)	2.143 6			
		0			
0 т				0.2	1
-2				0.18 - Kernel Density	
4-				▲ 0.16 -	
-6 -				▲ 0.14 - // \\	
-8					

Δ

-12

-14 --16 --18 -

-20

Determination of Kinematic Viscosity at 135 °C on sample #23255; results in mm²/s

lab	method	value	mark	z(targ)	remarks
154	D2170	953		-0.22	
225					
333					
335					
342	EN12595	804	G(0.01)	-5.05	
360					
305					
398					
399					
444					
447					
604 657	D2170	952		-0.26	
736	EN12595	952.1		-0.25	
781	EN12595	937.98		-0.71	
865	D2170/D2170M	934.0		-0.84	
1011	EN12595	939		-0.68	
1020					
1108					
1135	EN12595	977		0.56	
1320		 1000 F		1.06	
1340	EN 12090	1020.5		1.90	
1399					
1402	EN12595	973		0.43	
1613	D2170	1270	C,G(0.01)	10.05	first reported 1080
1724					
1730	EN12595	968		0.26	
1741	EN12595	992.4		1.05	
1833					
1849 1852					
1857	D2170	962.5		0.09	
1881					
1944	50/50				
1958	D2170	440	G(0.01)	-16.85	
6228	02170	949.7 		-0.33	
6229	EN12595	930.85		-0.94	
6404	ISO3104	1027		2.18	
6419 6420	D2170	021 04		1 22	
6420 6474	D2170 D2170	921.04 927		-1.23	
6561	DETTO				
	normality	suspect			
	n outliers	17 3			
	mean (n)	959.87			
	st.dev. (n)	30.624			
	R(calc.)	85.75			
	st.dev.(EN12595:23)	30.853			
	compare	00.39			
	R(D2170:22)	92.15			
³⁵⁰ I					0.014
250 -					x 0.012 - Kernel Density
150 -					0.01 -
050					
950	Δ Δ Δ	۵ ۵ ۵	ΔΔΔ	<u>A</u> A	
850					
	x				
750 L	342 229 865	10 11 10 10 10 10 10 10 10 10 10 10 10 1	657 736 154	857	0 0
-		- ÷			

method

lab

Determination of Penetration at 25 °C on sample #23255; results in 0.1 mm

z(targ)

remarks

mark

value

34 32 34 34 35 2 4 2 2 4 2 4 2 5 2 4 2 4 2 5 2 5 4 2 5 5 5 5	6404 781 1013 1013 0410 6410 228 233 339 1031 1031	1833 328 396 1011 154 398	004 11135 1944 1860 1865	1881 335 365 6228 657	1320 1328 1328 1340 1340 444 1087 342 342 342 3474 1108	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
48 - 46 - 44 - 42 - 38 - 36 -		<u> </u>	<u></u>	<u></u>	<u> </u>	x 0.3 x 0.25 - 0.2 - 0.15 - 0.1 -	ty
	R(D5:20)	7				7	
	normality n outliers mean (n) st.dev. (n) R(calc.) st.dev.(EN1426:15) R(EN1426:15) compare	OK 43 2 38.948 1.7078 4.782 1.0714 3			EN1426 only OK 33 1 39.060 1.7836 4.994 1.0714 3	D5 only OK 10 1 38.580 1.4505 4.061 	
1108 1135 1320 1340 1378 1399 1402 1613 1631 1724 1730 1741 1833 1849 1852 1857 1881 1944 1958 1990 6228 6229 6404 6419 6420 6474 6561	EN1426 automated EN1426 automated EN1426 manual EN1426 manual EN1426 automated EN1426 automated D5 automated EN1426 automated D5 automated D5 automated D5 automated	41.5 39 40 40.1 40 36 37.0 38 36 38 42.0 38 39.1 40 40.5 39.3 39 46 39 39.7 37 36 37,7 41 	R(0.01)	2.38 0.05 0.98 1.08 0.98 -2.75 -1.82 -0.88 -2.75 -0.88 2.85 -0.88 0.14 0.98 1.45 0.33 0.05 6.58 0.05 6.58 0.05 6.58 0.05 -1.82 -2.75 -1.82 -1.82 -1.82 -1.16 1.92			
225 328 333 342 365 396 398 399 444 447 604 657 736 781 865 1011 1026 1040	D5 manual EN1426 manual EN1426 manual EN1426 manual EN1426 manual EN1426 manual EN1426 manual EN1426 manual EN1426 manual EN1426 automated D5 manual D5 manual EN1426 automated D5/D5M manual EN1426 automated D5/D5M manual EN1426 automated	38.0 39 38 39.5 41.2 43.2 39.667 39 38 40.2 41 39 40 35 37 39.1 39 48.0	C R(0.01)	-0.88 0.05 -0.88 0.52 2.10 3.97 0.67 0.05 0.05 -0.88 1.17 1.92 0.05 0.98 -3.68 -1.82 0.14 0.05 -0.4 0.55 -0.88 -1.82 0.4 -0.55 -0.88 -1.82 -0.4 -0.55 -0.45	first reported 45.1		

Determination of Penetration Index on sample #23255;

lab	method	value	mark	z(targ)	remarks
154	EN12591	-0.6	THAT IN	_1 60	
225	LINIZUUT	-0.0		-1.00	
328					
333					
335					
342	EN12591	-0.2		0.55	
360					
365					
396	EN12591	-0.3		-0.01	
398					
399					
444					
447					
604					
657	Calculation	-0.11		1.06	
736	EN12591	-0.5		-1.13	
781	EN12591	-0.4		-0.57	
865					
1011	EN12591	-0.3		-0.01	
1026					
1040	EN12591	0.2		2.79	
1108	EN12591	-0.21		0.50	
1135	EN12591	-0.2		0.55	
1320					
1340	EN12591	-0.20		0.55	
1378	EN12591	-0.13		0.95	
1399				0.55	
1402		-0.2		0.55	
1013					
1724					
1724					
1741	EN12501	0.04		1 90	
1833	ENT255T	0.04			
1849					
1852					
1857	EN12591	-0.64	Е	-1.91	*)
1881					
1944	EN12591	-0.38		-0.45	
1958					
1990					
6228					
6229	EN12591	-0.66		-2.02	
6404	EN12591	-0.59		-1.63	
6419					
6420					
6474					
6561					
	normality	OK			
	n	18			
	outliers	0			
	mean (n)	-0.299			
	st.dev. (n)	0.2369			
	K(Calc.)	0.003			
	SLOEV.(EN12591:09)	0.1780			
	R(EN12591:09)	0.5			
Lab 1857	7: calculation difference	as Softenin	g Point was	corrected w	vithout correction of Penetration Index, iis calculated -0.21

Determination of RTFOT at 163 °C, Change of Mass on sample #23255; results in %

lab	method	value	mark	z(targ)	remarks
154	D2872	-0.199	mark	-0.58	Tomarko
225					
328					
333					
335					
342	EN12607-1	-0.17		-0.17	
360	EN12607-1	-0.141		0.24	
305	EN12607 1			0.25	
308	EN 12007-1	-0.14		0.25	
399					
444					
447					
604					
657	D2872	-0.15		0.11	
736	EN12607-1	-0.028		1.82	
781	EN12607-1	-0.154		0.05	
865	D2872	-0.228		-0.98	
1011	EN12607-1	-0.17		-0.17	
1026					
1040	EN12607 1	0.22	C P(0.01)	5 20	first reported 0.004
1135	EN12607-1	-0.14	0,1(0.01)	0.25	list reported 0.094
1320	EN12007-1	-0.14		0.20	
1340	FN12607-1	-0 11		0.67	
1378	EN12607-1	-0.138		0.28	
1399					
1402	EN12607-1	-0.15		0.11	
1613	D2872	-0.08	С	1.09	first reported 0.08
1631	EN12607-1	-0.16		-0.03	
1724		-0.14		0.25	
1730	EN12607-1	-0.216		-0.81	
1741	EN12607-1	-0.209		-0.72	
1833		-0.14		0.25	
1849	EN12607-1	-0.18		-0.31	
1857	EN12607-1	-0.158		0.00	
1881	EN12007-1	-0.150		0.00	
1944	EN12607-1	-0.21		-0.73	
1958	D2872	0.08	R(0.01)	3.33	
1990			w`´		test result withdrawn, reported 48.6
6228	EN12607-1	-0.194		-0.51	
6229	EN12607-1	-0.19		-0.45	
6404	EN12607-1	-0.15	С	0.11	first reported 0.15
6419					
6420					
6474					
6561					
	normality	not OK			
	n	25			
	outliers	2			
	mean (n)	-0.158			
	st.dev. (n)	0.0437			
	R(calc.)	0.1224			
	st.dev.(EN12607-1:14)	0.0714			
	R(EN12607-1:14)	0.2			
^{0.3} T					
0.2					x Kernel Density
0.1					
					x 8 - // \
1 º †					

۵ ۵ ۵

944

741

154

228

8229 1849 342 342 1631 781

857

۵ ۵

-0.1 -0.2

-0.3

-0.4 -0.5

865

0.4

0.2

Ó

4

2

0

-0.2

Determination of RTFOT at 163 °C, Retained Penetration on sample #23255; results in %

lah	method	value	mark z(targ)	remarks		
154	D2872	66.67	0.40	Temarka		
225	DZOTZ					
328						
333						
335						
342	EN12607-1	63.1	-0.60			
360	EN12607-1	54.6	-2.98			
305	EN12607 1	 50.0				
308	EN12007-1	59.0	-1.75			
399						
444						
447						
604						
657	D2872	65	-0.07			
736	EN12607-1	62.86	-0.67			
865	EN12007-1	59.40	-1.02			
1011	EN12607-1	64	-0.35			
1026						
1040						
1108	EN12607-1	66.59	0.38			
1135	EN12607-1	64	-0.35			
1320						
1340	EN12607-1	74.81	2.68			
1370	EN12007-1	72.5	2.03			
1402	EN12607-1	69	1.05			
1613	D2872	62.16	-0.86			
1631	EN12607-1	73.7	2.37			
1724		63.89	-0.38			
1730	EN12607-1	68.4	0.88			
1741						
1833	EN12607 1	 50 0				
1852	LN12007-1		-1.50			
1857	EN12607-1	58.02	-2.02			
1881						
1944	EN12607-1	59.5	-1.61			
1958	D2872	64	-0.35			
1990	D1754	75.5	2.87			
6228	EN12007-1 EN12607-1	07.5 70.27	0.03			
6404	EN12607-1	66.7	0.41			
6419						
6420						
6474						
6561						
	u a ma a life c					
	normality	25				
	outliers	0				
	mean (n)	65.245				
	st.dev. (n)	5.4277				
	R(calc.)	15.197				
	st.dev.(EN12607-1:14)	3.5714				
	R(EN12607-1:14)	10				
					۱	
⁸⁰ T					0.08	Kamal Danatha
75				δ	0.07 -	
				<u>^</u>	0.06	
70 -				۸ ۵	0.05	
			Δ Δ Δ ^Δ	-		
C0 1	A A	Δ Δ Δ	۵		0.04 -	
60 -					0.03	
<u>∧</u>	u				0.02 -	

55 ·

0.01

Determination of RTFOT at 163 °C, Viscosity Ratio on sample #23255

lab	method	value	mark	z(targ)	remarks	
154	D2872	3.59		-0.61		
225						
328						
335						
342						
360						
365						
396						
390						
444						
447						
604	D0070					
657 736	D2872 EN12607 1	3.73		-0.09		
781	EN12607-1	3.47 4 21		-1.00		
865						
1011						
1026						
1040						
1108	EN12607-1	 5 0		4.65		
1320				4.05		
1340	EN12607-1	2.96		-2.96		
1378						
1399						
1402						
1631						
1724						
1730	EN12607-1	4.15		1.48		
1741						
1833						
1849						
1857						
1881						
1944						
1958						
1990						
6220						
6404	EN12607-1	2.92		-3.11		
6419						
6420						
6474						
1000						
	normality	unknown				
	n	8				
	outliers	0				
	mean (n)	3.754				
	R(calc.)	0.0919				
	st.dev.(EN12607-1:14)	0.2681				
	R(EN12607-1:14)	0.751				
^{5.5} T						0.7
5 -					۵	0.6 - Kernel Density
4.0 -				Α	Δ	0.5
4				4		0.4 -
3.5	٨	۵	Δ			0.3 -
-						
<u>۸</u>	Δ					
2.5 -						0.1 -
2	ç 0	4	ŀ.	Q	ه <u>ت</u>	
40	5 <u>5</u>	ę	65	73	82 ⁶²	0 2 4 6 8

Determination of RTFOT at 163 °C, Increase in Softening Point on sample #23255; results in °C

lab	method	value	mark	z(targ)	remarks		
154	D2872	7.0		-0.41			
225							
333							
335							
342	EN12607-1	9		0.99			
365	EN12007-1	0.00		-1.11			
396	EN12607-1	9.0		0.99			
398							
399 144							
447							
604							
657 736	D2872	8.2		0.43			
781	EN12607-1	7.0 8.6		0.41			
865							
1011	EN12607-1	9.0		0.99			
1026							
1108	EN12607-1	6.5		-0.76			
1135	EN12607-1	7.6		0.01			
1320	EN10607 1	 1 7					
1378	EN12607-1	4.7 7.4		-2.02			
1399							
1402	EN12607-1	8.2		0.43			
1613 1631	D2872 FN12607-1	11.5 3.2	C	-3.07	first reported 60.8		
1724		4.8	0	-1.95			
1730	EN12607-1	6.8		-0.55			
1741 1833		 7 8		0.15			
1849	EN12607-1	8.53		0.66			
1852							
1857	EN12607-1	9.6		1.41			
1944	FN12607-1	 8.4		0.57			
1958							
1990							
6228 6229	FN12607-1	 7 8		0.15			
6404	EN12607-1	8		0.29			
6419							
6420 6474							
6561							
	normality	suspect					
	outliers	23 0					
	mean (n)	7.59					
	st.dev. (n)	1.775					
	R(caic.) st dev (FN12607-1·14)	4.97 1.429					
	R(EN12607-1:14)	4.0					
	· · ·						
¹⁴						0.3	(am al Dan aite
12					δ	0.25	Cernel Density
10 -							
8 -				۵ ۵ ۵			
	<u>م</u> م م	<u> </u>				0.15 -	
° [۵ ۱ <u>۰۰۰</u>						
4 .							
2						0.05	

o ↓ 0

2 -

Determination of Softening Point (Ring and Ball) on sample #23255; results in °C

lab	method	value	mark	z(targ)	remarks	
154	D36	55	С	-1.96	first reported 62	
225	D36	54.6		-2.52		
328	EN1427	56.6		0.28		
333	EN 1427	56.8		0.00		
342	EN1427	56.3		-0.14		
360	EN1427	55.4		-1.40		
365	EN1427	56.2		-0.28		
396	EN1427	56.2		-0.28		
398	EN1427	57		0.84		
399	EN1407	 56 9		0.56		
444 447	EN 1427 EN 1427	50.0 56.4		0.50		
604	D36	56.1		-0.42		
657	D36	57.0		0.84		
736	EN1427	56.4		0.00		
781	EN1427	56.4		0.00		
865	D36/D36M	56.5		0.14		
1011	EN 1427	50.4		0.00		
1020	FN1427	56.5		0.14		
1108	EN1427	56.2		-0.28		
1135	EN1427	56.8		0.56		
1320	EN1427	55.4		-1.40		
1340	EN1427	56.6		0.28		
1378	EN1427	56.9		0.70		
1399	EN1427	 57 8		1 96		
1613	D36	56.3		-0.14		
1631	EN1427	57.6		1.68		
1724	D36	56.8		0.56		
1730	EN1427	57.6		1.68		
1741	EN1427	57.20		1.12		
1833	EN1427	56.8		0.56		
1849	EN 1427 EN 1427	55.Z		-1.08		
1857	EN1427 FN1427	56.4	С	0.00	first reported 54 4	
1881	EN1427	56.20	C	-0.28		
1944	EN1427	56.0		-0.56		
1958	D36	52.8	R(0.01)	-5.04		
1990	D36	56.3		-0.14		
6228	EN1427	56.35		-0.07		
6404	EN 1427 EN 1427	55.8		-1.00		
6419	EN1427	56.5		0.14		
6420	D36	57.4		1.40		
6474	D3461	59.2	R(0.01)	3.92		
6561						
	n a maa a life a					
	normality	0K 42				
	outliers	42 2				
	mean (n)	56.40				
	st.dev. (n)	0.685				
	R(calc.)	1.92				
	st.dev.(EN1427:15)	0.714				
	R(EN1427:15)	2.0				
	R(D36/D36M·14R20)	5 47	automated	electronic	thermometer	
	R(D36/D36M:14R20)	5.15	mercury th	ermomete	r	
	· /		,			
⁶⁰ T						0.9
59 -					*	0.8 - Kernel Density
58 -					. <u> </u>	0.7
57 -						0.6 -
56 -	<u>م م م م م م</u>		<u></u>	<u></u>		0.5 -
55						0.4
54						0.3
53 x						0.2
52 -						
51			m N = ~ · · ·			
1956 225 154	1841 6221 640 640 604 604 1322 1322 604 1322 1326 1322 1326 1108 1108 1108 1108 1108 1108 1108 110	161: 1996 6226 781 781 781	33: 445 101: 1852 1857 1857 1040	86! 6415 326 1340 1340 335	113: 44- 1722 1837 1837 1376 1837 1741 1741 1730 1730 1730 1730 1730 1730 1730 173	50 52 54 56 58 60 62
L						

method

lab

154

Determination of Solubility in Xylene on sample #23255; results in %M/M

mark

z(targ)

remarks

value

225 328 333 335 342 360 365 396 398 399 444 447 604	EN12592 EN12592	 99.73 99.491 									
657 736 781 865 1011 1026 1040	EN12592	 99.29 			 						
1108 1135 1320	EN12592	 99.80 			 						
1340 1378 1399	EN12592 EN12592	99.565 99.8 			 						
1402 1613 1631	EN12592 EN12592	99.20 99.30			 						
1724 1730	EN12592	99.95									
1741 1833 1849 1852 1857	EN12592 EN12592 EN12592	99.400 99.38 99.64 			 						
1944 1958 1990	EN12592 D2042	99.89 99.7			 						
6228 6229 6404 6419 6420 6474 6561	EN12592 EN12592	 99.70 99.32 			 						
	normality n outliers mean (n) st.dev. (n) R(calc.) st.dev.(EN12592:14) R(EN12592:14)	OK 16 0 99.57 0.236 0.66 (0.054) (0.150)									
100 T 19.9 - 19.8 - 19.7 - 19.6 -			Δ	۵	۵	۵	۵	۵	۵	۵	1.8 1.6 1.4 1.2 1 1
1934 - 1934 - 1932 - A 1911 -	۵ ۵ ۵	۵									0.8 - 0.6 - 0.4 - 0.2 -
60 20 20 20 20 20 20 20 20 20 20 20 20 20	781 1631 6404 1833	1741	1340	1958	6229	342	1378	1135	1944	1724	98 99 100 101

Determination of Ductility on sample #23255; results in cm

lah	method	value	mark	z(targ)	remarks
154		>120	mark	2(1019)	l'omarko
225	DTIS	>120			
328					
320					
335					
342					
360					
365					
396					
398					
399					
444					
447					
604					
657	D113	150+			
736	D113	150+			
781	D113	>100			
865	D113	>100			
1011					
1026					
1040					
1108					
1135					
1320					
1340					
1378					
1399					
1402	D110				
1013	D113	>100			
1704					
1724					
1730					
1833					
1840					
1852					
1857					
1881					
1944	D113	150			
1958	D113	>100			
1990					
6228					
6229	D113	150			
6404	EN13589	115			
6419					
6420					
6474	D113	116			
6561					
	n	11			
	mean (n)	>100			

APPENDIX 2

Number of participants per country

1 lab in AUSTRIA

- 1 lab in BELGIUM
- 1 lab in BOSNIA and HERZEGOVINA
- 1 lab in BULGARIA
- 1 lab in CHINA, People's Republic
- 1 lab in COTE D'IVOIRE
- 1 lab in EGYPT
- 3 labs in FRANCE
- 2 labs in GERMANY
- 3 labs in GREECE
- 1 lab in IRELAND
- 4 labs in ITALY
- 1 lab in JORDAN
- 1 lab in KAZAKHSTAN
- 1 lab in LITHUANIA
- 2 labs in MALAYSIA
- 2 labs in NETHERLANDS
- 1 lab in PORTUGAL
- 1 lab in ROMANIA
- 2 labs in RUSSIAN FEDERATION
- 1 lab in SAUDI ARABIA
- 1 lab in SERBIA
- 1 lab in SINGAPORE
- 1 lab in SLOVAKIA
- 1 lab in SOUTH AFRICA
- 1 lab in SPAIN
- 4 labs in TURKIYE
- 2 labs in UNITED ARAB EMIRATES
- 4 labs in UNITED KINGDOM
- 1 lab in UNITED STATES OF AMERICA

APPENDIX 3

Abbreviations

С	= final test result after checking of first reported suspect test result
D(0.01)	= outlier in Dixon's outlier test
D(0.05)	= straggler in Dixon's outlier test
G(0.01)	= outlier in Grubbs' outlier test
G(0.05)	= straggler in Grubbs' outlier test
DG(0.01)	= outlier in Double Grubbs' outlier test
DG(0.05)	= straggler in Double Grubbs' outlier test
R(0.01)	= outlier in Rosner's outlier test
R(0.05)	= straggler in Rosner's outlier test
E	= calculation difference between reported test result and result calculated by iis
W	= test result withdrawn on request of participant
ex	= test result excluded from statistical evaluation
n.a.	= not applicable
n.e.	= not evaluated
n.d.	= not detected
fr.	= first reported
f+?	= possibly a false positive test result?
f-?	= possibly a false negative test result?
SDS	= Safety Data Sheet

Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79.3</u>, 589-621, (1996)
- 12 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)

Address: Telephone number: Email address: Website: Malledijk 18, P.O. Box 200, 3200 AE Spijkenisse, The Netherlands +31 (0)88 214 45 41 nl.iis@sgs.com www.iisnl.com

Institute for Interlaboratory Studies is a full member of SGS Nederland B.V. and registered at the Chamber of Commerce under number: 24226722. Unless otherwise agreed, all orders are executed in accordance with the SGS general conditions.